Quantum information processing in phase space: A modular variables approach

Ketterer, A.; Keller, A.; Walborn, S. P.; Coudreau, T.; Milman, P.

Abstract

Binary quantum information can be fault-tolerantly encoded in states defined in infinite-dimensional Hilbert spaces. Such states define a computational basis, and permit a perfect equivalence between continuous and discrete universal operations. The drawback of this encoding is that the corresponding logical states are unphysical, meaning infinitely localized in phase space. We use the modular variables formalism to show that, in a number of protocols relevant for quantum information and for the realization of fundamental tests of quantum mechanics, it is possible to loosen the requirements on the logical subspace without jeopardizing their usefulness or their successful implementation. Such protocols involve measurements of appropriately chosen modular variables that permit the readout of the encoded discrete quantum information from the corresponding logical states. Finally, we demonstrate the experimental feasibility of our approach by applying it to the transverse degrees of freedom of single photons.

Más información

Título según WOS: ID WOS:000381882800001 Not found in local WOS DB
Título de la Revista: PHYSICAL REVIEW A
Volumen: 94
Número: 2
Editorial: AMER PHYSICAL SOC
Fecha de publicación: 2016
DOI:

10.1103/PhysRevA.94.022325

Notas: ISI