Linear-Optical Simulation of the Cooling of a Cluster-State Hamiltonian System

Aguilar, G. H.; Kolb, T.; Cavalcanti, D.; Aolita, L.; Chaves, R.; Walborn, S. P.; Ribeiro, P. H. Souto

Abstract

A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states-at sufficiently low temperature-are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such a cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalization for these states. This allows us to tune the system's temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterization of experimental cluster-state computation under imperfect conditions.

Más información

Título según WOS: ID WOS:000338513000002 Not found in local WOS DB
Título de la Revista: PHYSICAL REVIEW LETTERS
Volumen: 112
Número: 16
Editorial: AMER PHYSICAL SOC
Fecha de publicación: 2014
DOI:

10.1103/PhysRevLett.112.160501

Notas: ISI