A posteriori error estimates for the Johnson-Nedelec FEM-BEM coupling

Aurada, M.; Feischl, M.; Karkulik, M.; Praetorius, D.

Abstract

Only very recently, Sayas [The validity of Johnson-Nedelec's BEM-FEM coupling on polygonal interfaces. SIAM J Numer Anal 2009;47:3451-63] proved that the Johnson-Nedelec one-equation approach from Ion the coupling of boundary integral and finite element methods. Math Comput 1980;35:1063-791 provides a stable coupling of finite element method (FEM) and boundary element method (BEM). In our work, we now adapt the analytical results for different a posteriori error estimates developed for the symmetric FEM-BEM coupling to the Johnson-Nedelec coupling. More precisely, we analyze the weighted-residual error estimator, the two-level error estimator, and different versions of (h-h/2)-based error estimators. In numerical experiments, we use these estimators to steer h-adaptive algorithms, and compare the effectivity of the different approaches. (C) 2011 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: ID WOS:000297192000021 Not found in local WOS DB
Título de la Revista: ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS
Volumen: 36
Número: 2
Editorial: ELSEVIER SCI LTD
Fecha de publicación: 2012
Página de inicio: 255
Página final: 266
DOI:

10.1016/j.enganabound.2011.07.017

Notas: ISI