Regular dessins d'enfants with field of moduli Q ((p)root 2)
Abstract
Herradon has recently provided an example of a regular dessin d'enfant whose field of moduli is the non-abelian extension Q(3 root 2) answering in this way a question due to Conder, Jones, Streit and Wolfart. In this paper we observe that Herradon's example belongs naturally to an infinite series of such kind of examples; for each prime integer p >= 3 we construct a regular dessin d'enfant whose field of moduli is the non-abelian extension Q (p root 2); for p = 3 it coincides with Herradon's example.
Más información
| Título según WOS: | Regular dessins d'enfants with field of moduli Q ((p)root 2) |
| Título de la Revista: | ARS MATHEMATICA CONTEMPORANEA |
| Volumen: | 13 |
| Número: | 2 |
| Editorial: | UP FAMNIT |
| Fecha de publicación: | 2017 |
| Página de inicio: | 323 |
| Página final: | 330 |
| DOI: |
10.26493/1855-3974.1202.9c1 |
| Notas: | ISI |