Hyperelliptic curves encryption combined with block codes for Gaussian channel

Jiron, I.; Soto, I.; Carrasco, R.; Becerra, N.

Abstract

In this paper, a new cryptographic system is constructed using a combination of a hyperelliptic curve of genus g = 2 over the Galois field GF(2 '') and a Reed-Solomon code (N, K) over the Galois field GF(2"') and this system uses a smaller key than the elliptic curves cryptosystem and the Rivest, Shamir, and Adleman cryptosystem. The design criterion for the combination can be expressed as the data compression condition and addressing capability of the code. In addition, the system performance is compared with other systems; extraordinary improvements of 8 and 16.5 dB can be obtained for a BER = 10(-5), when compared with binary phase shift keying and differential chaos shift keying, respectively. This system has a polynomial complexity, which depends on data length and the number of operations in GF(2 ''). Copyright (C) 2005 John Wiley Sons, Ltd.

Más información

Título según WOS: ID WOS:000240246500005 Not found in local WOS DB
Título de la Revista: INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS
Volumen: 19
Número: 7
Editorial: Wiley
Fecha de publicación: 2006
Página de inicio: 809
Página final: 830
DOI:

10.1002/dac.771

Notas: ISI