TerraceM: A MATLAB (R) tool to analyze marine and lacustrine terraces using high-resolution topography

Jara-Munoz, Julius; Melnick, Daniel; Strecker, Manfred R.

Abstract

High-resolution topographic data greatly facilitate the remote identification of geomorphic features, furnishing valuable information concerning surface processes and characterization of reference markers for quantifying tectonic deformation. Marine terraces have been used as long baseline geodetic markers of relative past sea-level positions, reflecting the interplay between vertical crustal movements and sea-level oscillations. Uplift rates may be determined from the terrace age and the elevation of its shoreline angle, a geomorphic feature that can be correlated with past sea-levels positions. A precise definition of the shoreline angle in time and space is essential to obtain reliable uplift rates with coherent spatial correlation. To improve our ability to rapidly assess and map shoreline angles at regional and local scales, we have developed TerraceM, a MATLAB (R) graphical user interface that allows the shoreline angle and its associated error to be estimated using high-resolution topography. TerraceM uses topographic swath profiles oriented orthogonally to the terrace riser. Four functions are included to analyze the swath profiles and extract the shoreline angle, from both staircase sequences of multiple terraces and rough coasts characterized by eroded remnants of emerged terrace surfaces. The former are measured by outlining the paleocliffs and paieo-platforms and finding their intersection by extrapolating linear regressions, whereas the latter are assessed by automatically detecting peaks of sea-stack tops and back-projecting them to the modern sea cliff. In the absence of rigorous absolute age determinations of marine terraces, their geomorphic age may be estimated using previously published diffusion models. Postprocessing functions are included to obtain first-order statistics of shoreline-angle elevations and their spatial distribution. TerraceM has the ability to process series of profiles from several sites in an efficient and structured workflow. Results may be exported in Google Earth and ESRI shapefile formats. The precision and accuracy of the method have been estimated from a case study at Santa Cruz, California, by comparing TerraceM results with published field measurements. The repeatability was evaluated using multiple measurements made by inexperienced users. TerraceM will improve the efficiency and precision of estimating shoreline-angle elevations in wave-cut terraces in both marine and lacustrine environments.

Más información

Título según WOS: ID WOS:000369539200008 Not found in local WOS DB
Título de la Revista: GEOSPHERE
Volumen: 12
Número: 1
Editorial: GEOLOGICAL SOC AMER, INC
Fecha de publicación: 2016
Página de inicio: 176
Página final: 195
DOI:

10.1130/GES01208.1

Notas: ISI