A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate
Abstract
We extend the applicability of stable mixed finite elements for linear plane elasticity, such as PEERS, to a mixed variational formulation of hyperelasticity. The present approach is based on the introduction of the strain tensor as a further unknown, which yields a two-fold saddle point nonlinear operator equation for the corresponding weak formulation. We provide the uniqueness of solution for the continuous and discrete schemes, and derive the usual Cea estimate for the associated error. Finally, a reliable a-posteriori error estimate, based on the solution of local Dirichlet problems, and well suited for adaptive computations, is also given.
Más información
Título según WOS: | A mixed finite element method for nonlinear elasticity: two-fold saddle point approach and a-posteriori error estimate |
Título según SCOPUS: | A mixed finite element method for nonlinear elasticity: Two-fold saddle point approach and a-posteriori error estimate |
Título de la Revista: | NUMERISCHE MATHEMATIK |
Volumen: | 91 |
Número: | 2 |
Editorial: | SPRINGER HEIDELBERG |
Fecha de publicación: | 2002 |
Página de inicio: | 197 |
Página final: | 222 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s002110100337 |
DOI: |
10.1007/s002110100337 |
Notas: | ISI, SCOPUS |