Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian

Del Pino M.; Dolbeault J.

Abstract

We study the asymptotic behaviour of nonnegative solutions to: ut = pum using an entropy estimate based on a sub-family of the Gagliardo-Nirenberg inequalities - or, in the limit case m = (p - 1)-1, on a logarithmic Sobolev inequality in W1,P - for which optimal functions are known. © 2002 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS.

Más información

Título según WOS: Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian
Título según SCOPUS: Nonlinear diffusions and optimal constants in Sobolev type inequalities: Asymptotic behaviour of equations involving the p-Laplacian [Diffusions non linéaires et constantes optimales dans des inégalités de type Sobolev: Comportement asymptotique d'équations faisant intervenir le p-Laplacien]
Título de la Revista: COMPTES RENDUS MATHEMATIQUE
Volumen: 334
Número: 5
Editorial: ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
Fecha de publicación: 2002
Página de inicio: 365
Página final: 370
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S1631073X02022252
DOI:

10.1016/S1631-073X(02)02225-2

Notas: ISI, SCOPUS