Multiplicative eta-quotients

Abstract

Let eta(z) be the Dedekind eta-function. In this work we exhibit all modular forms of integral weight f(z) = eta(t(1)z)(r)1 eta(t(2)z)(r2)...eta(t(s)z)(rs), for positive integers s and t(j) and arbitrary integers r(j), such that both f(z) and its image under the Fricke involution are eigenforms of all Hecke operators. We also relate most of these modular forms with the Conway group 2Co(1) via a generalized McKay-Thompson series.

Más información

Título según WOS: ID WOS:A1996WC35200005 Not found in local WOS DB
Título de la Revista: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 348
Número: 12
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 1996
Página de inicio: 4825
Página final: 4856
DOI:

10.1090/S0002-9947-96-01743-6

Notas: ISI