Multiplicative eta-quotients
Abstract
Let eta(z) be the Dedekind eta-function. In this work we exhibit all modular forms of integral weight f(z) = eta(t(1)z)(r)1 eta(t(2)z)(r2)...eta(t(s)z)(rs), for positive integers s and t(j) and arbitrary integers r(j), such that both f(z) and its image under the Fricke involution are eigenforms of all Hecke operators. We also relate most of these modular forms with the Conway group 2Co(1) via a generalized McKay-Thompson series.
Más información
Título según WOS: | ID WOS:A1996WC35200005 Not found in local WOS DB |
Título de la Revista: | TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 348 |
Número: | 12 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 1996 |
Página de inicio: | 4825 |
Página final: | 4856 |
DOI: |
10.1090/S0002-9947-96-01743-6 |
Notas: | ISI |