A converse theorem for Jacobi forms

Abstract

Let f(q(tau), q(z)) = Sigma(n, r)c(n, r) q(tau)(n)q(z)(r) be a power series whose coefficients satisfy a par ticular periodicity condition depending on the integer r module 2m. We first associate to f(q(tau), q(z)) a 2m-vector-valued function Lambda(f, s) via a generalized Mellin transform. Then we show that the function Lambda(fs) is entire, bounded on vertical strips and satisfies certain matrix functional equation if, and only if, f(q(tau), q(z)) is the Fourier expansion of a Jacobi cusp form of index m invariant under the group SL(2, Z) x Z(2). This is the direct analogue of Hecke's converse theorem for elliptic cusp forms in the context of Jacobi cusp forms on SL(2, Z) x Z(2). (C) 1996 Academic Press. Inc.

Más información

Título según WOS: ID WOS:A1996VU21300011 Not found in local WOS DB
Título de la Revista: JOURNAL OF NUMBER THEORY
Volumen: 61
Número: 1
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 1996
Página de inicio: 181
Página final: 193
DOI:

10.1006/jnth.1996.0143

Notas: ISI