L-functions for Jacobi forms of arbitrary degree
Abstract
A finite number of L-functions are associated td every Jacobi cusp form of degree n. These L-functions are infinite series constructed with the Fourier coefficients of the form and a variable s in C-n. It is proved that each L-function has an integral representation, admits a holomorphic continuation to the whole space C-n, and the row vector formed with them satisfies a particular matrix functional equation.
Más información
Título según WOS: | ID WOS:000077090100005 Not found in local WOS DB |
Título de la Revista: | ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG |
Volumen: | 68 |
Editorial: | VANDENHOECK RUPRECHT |
Fecha de publicación: | 1998 |
Página de inicio: | 45 |
Página final: | 63 |
DOI: |
10.1007/BF02942550 |
Notas: | ISI |