L-functions for Jacobi forms of arbitrary degree

Abstract

A finite number of L-functions are associated td every Jacobi cusp form of degree n. These L-functions are infinite series constructed with the Fourier coefficients of the form and a variable s in C-n. It is proved that each L-function has an integral representation, admits a holomorphic continuation to the whole space C-n, and the row vector formed with them satisfies a particular matrix functional equation.

Más información

Título según WOS: ID WOS:000077090100005 Not found in local WOS DB
Título de la Revista: ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG
Volumen: 68
Editorial: VANDENHOECK RUPRECHT
Fecha de publicación: 1998
Página de inicio: 45
Página final: 63
DOI:

10.1007/BF02942550

Notas: ISI