A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings

Barrientos, MA; Gatica, GN; Maischak, M

Abstract

In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the usual Cea error estimate and the corresponding rate of convergence. In addition, we develop two different a-posteriori error analyses yielding explicit residual and implicit Bank-Weiser type reliable estimates, respectively. Several numerical results illustrate the suitability of these estimators for the adaptive computation of the discrete solutions.

Más información

Título según WOS: A-posteriori error estimates for linear exterior problems via mixed-FEM and DtN mappings
Título según SCOPUS: A-posteriori error estimates for linear exterior problems via mixed-FEM and DTN mappings
Título de la Revista: ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE
Volumen: 36
Número: 2
Editorial: EDP SCIENCES S A
Fecha de publicación: 2002
Página de inicio: 241
Página final: 272
Idioma: English
URL: http://www.esaim-m2an.org/10.1051/m2an:2002011
DOI:

10.1051/m2an:2002011

Notas: ISI, SCOPUS