Elliptic curves, L-functions, and Hilbert's tenth problem

Murty, M. Ram

Abstract

Hilbert's tenth problem for rings of integers of number fields remains open in general, although a negative solution has been obtained by Mazur and Rubin conditional to a conjecture on Shafarevich-Tate groups. In this work we consider the problem from the point of view of analytic aspects of L-functions instead. We show that Hilbert's tenth problem for rings of integers of number fields is unsolvable, conditional to the following conjectures for L-functions of elliptic curves: the automorphy conjecture and the rank part of the Birch and Swinnerton Dyer conjecture. (C) 2017 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000412619300001 Not found in local WOS DB
Título de la Revista: JOURNAL OF NUMBER THEORY
Volumen: 182
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2018
Página de inicio: 1
Página final: 18
DOI:

10.1016/j.jnt.2017.07.008

Notas: ISI