Elliptic curves, L-functions, and Hilbert's tenth problem
Abstract
Hilbert's tenth problem for rings of integers of number fields remains open in general, although a negative solution has been obtained by Mazur and Rubin conditional to a conjecture on Shafarevich-Tate groups. In this work we consider the problem from the point of view of analytic aspects of L-functions instead. We show that Hilbert's tenth problem for rings of integers of number fields is unsolvable, conditional to the following conjectures for L-functions of elliptic curves: the automorphy conjecture and the rank part of the Birch and Swinnerton Dyer conjecture. (C) 2017 Elsevier Inc. All rights reserved.
Más información
| Título según WOS: | ID WOS:000412619300001 Not found in local WOS DB |
| Título de la Revista: | JOURNAL OF NUMBER THEORY |
| Volumen: | 182 |
| Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
| Fecha de publicación: | 2018 |
| Página de inicio: | 1 |
| Página final: | 18 |
| DOI: |
10.1016/j.jnt.2017.07.008 |
| Notas: | ISI |