Powerful values of polynomials and a conjecture of Vojta

Abstract

We study some problems about powerful values of polynomials over number fields, such as giving uniform bounds for the number of consecutive squareful values of squarefree polynomials, or the higher exponent analogue of the M squares problem. We show that a Diophantine conjecture of Vojta implies complete answers to these problems, and we show unconditional analogues for function fields and complex meromorphic functions. Some of these results have consequences in logic related to Hilbert's tenth problem, and we also explore these. (c) 2013 Elsevier Inc. All rights reserved.

Más información

Título según WOS: ID WOS:000320291400011 Not found in local WOS DB
Título de la Revista: JOURNAL OF NUMBER THEORY
Volumen: 133
Número: 9
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2013
Página de inicio: 2964
Página final: 2998
DOI:

10.1016/j.jnt.2013.03.001

Notas: ISI