MULTIPLICATIVE SUBGROUPS AVOIDING LINEAR RELATIONS IN FINITE FIELDS AND A LOCAL-GLOBAL PRINCIPLE

Sun, Chia-Liang

Abstract

We study a local-global principle for polynomial equations with coefficients in a finite field and solutions restricted in a rank-one multiplicative subgroup in a function field over this finite field. We prove such a local-global principle for all sufficiently large characteristics, and we show that the result should hold in full generality under a certain reasonable hypothesis related to the existence of large multiplicative subgroups of finite fields avoiding linear relations. We give a method for verifying the latter hypothesis in specific cases, and we show that it is a consequence of the classical Artin primitive root conjecture. In particular, this function field local-global principle is a consequence of GRH. We also discuss the relation of these problems with a finite field version of the Manin-Mumford conjecture.

Más información

Título según WOS: ID WOS:000373404700008 Not found in local WOS DB
Título de la Revista: PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Volumen: 144
Número: 6
Editorial: AMER MATHEMATICAL SOC
Fecha de publicación: 2016
Página de inicio: 2361
Página final: 2373
DOI:

10.1090/proc/12941

Notas: ISI