MULTIPLICATIVE SUBGROUPS AVOIDING LINEAR RELATIONS IN FINITE FIELDS AND A LOCAL-GLOBAL PRINCIPLE
Abstract
We study a local-global principle for polynomial equations with coefficients in a finite field and solutions restricted in a rank-one multiplicative subgroup in a function field over this finite field. We prove such a local-global principle for all sufficiently large characteristics, and we show that the result should hold in full generality under a certain reasonable hypothesis related to the existence of large multiplicative subgroups of finite fields avoiding linear relations. We give a method for verifying the latter hypothesis in specific cases, and we show that it is a consequence of the classical Artin primitive root conjecture. In particular, this function field local-global principle is a consequence of GRH. We also discuss the relation of these problems with a finite field version of the Manin-Mumford conjecture.
Más información
Título según WOS: | ID WOS:000373404700008 Not found in local WOS DB |
Título de la Revista: | PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY |
Volumen: | 144 |
Número: | 6 |
Editorial: | AMER MATHEMATICAL SOC |
Fecha de publicación: | 2016 |
Página de inicio: | 2361 |
Página final: | 2373 |
DOI: |
10.1090/proc/12941 |
Notas: | ISI |