Rapid evolution of pearl oyster shell matrix proteins with repetitive, low-complexity domains
Abstract
The lysine (K)-rich mantle protein (KRMP) and shematrin protein families are unique to the organic matrices of pearl oyster shells. Similar to other proteins that are constituents of tough, extracellular structures, such as spider silk, shematrins and KRMPs, contain repetitive, low-complexity domains (RLCDs). Comprehensive analysis of available gene sequences in three species of pearl oyster using BLAST and hidden Markov models reveal that both gene families have large memberships in these species. The shematrin gene family expanded before the speciation of these oysters, leading to a minimum of eight orthology groups. By contrast, KRMPs expanded primarily after speciation leading to species-specific gene repertoires. Regardless of their evolutionary history, the rapid evolution of shematrins and KRMPs appears to be the result of the intrinsic instability of repetitive sequences encoding the RLCDs, and the gain, loss and shuffling of other motifs. This mode of molecular evolution is likely to contribute to structural characteristics and evolvability of the pearl oyster shell. Based on these observations, we infer that analogous RLCD proteins throughout the animal kingdom also have the capacity to rapidly evolve and as a result change their structural properties.
Más información
Título según WOS: | ID WOS:000316415600016 Not found in local WOS DB |
Título de la Revista: | JOURNAL OF THE ROYAL SOCIETY INTERFACE |
Volumen: | 10 |
Número: | 82 |
Editorial: | ROYAL SOC |
Fecha de publicación: | 2013 |
DOI: |
10.1098/rsif.2013.0041 |
Notas: | ISI |