New a priori analysis of first-order system least-squares finite element methods for parabolic problems
Abstract
We provide new insights into the a priori theory for a time-stepping scheme based on least-squares finite element methods for parabolic first-order systems. The elliptic part of the problem is of general reaction-convection-diffusion type. The new ingredient in the analysis is an elliptic projection operator defined via a nonsymmetric bilinear form, although the main bilinear form corresponding to the least-squares functional is symmetric. This new operator allows to prove optimal error estimates in the natural norm associated to the problem and, under additional regularity assumptions, in the L-2 norm. Numerical experiments are presented which confirm our theoretical findings.
Más información
| Título según WOS: | New a priori analysis of first-order system least-squares finite element methods for parabolic problems |
| Título según SCOPUS: | New a priori analysis of first-order system least-squares finite element methods for parabolic problems |
| Título de la Revista: | NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS |
| Volumen: | 35 |
| Número: | 5 |
| Editorial: | Wiley |
| Fecha de publicación: | 2019 |
| Página de inicio: | 1777 |
| Página final: | 1800 |
| Idioma: | English |
| DOI: |
10.1002/num.22376 |
| Notas: | ISI, SCOPUS |