An inverse problem for an immobilized enzyme model
Abstract
A method for estimating unknown kinetic parameters in a mathematical model for catalysis by an immobilized enzyme is studied. The model consists of a semilinear parabolic partial differential equation modeling the reaction-diffusion process coupled with an ordinary differential equation for the rate transport. The well posedness of the model is proven; a PDE-constrained optimization approach is applied to the stated inverse problem; and finally, some numerical simulations are presented.
Más información
| Título según WOS: | An inverse problem for an immobilized enzyme model |
| Título según SCOPUS: | An inverse problem for an immobilized enzyme model |
| Título de la Revista: | MATHEMATICAL METHODS IN THE APPLIED SCIENCES |
| Volumen: | 42 |
| Número: | 12 |
| Editorial: | Wiley |
| Fecha de publicación: | 2019 |
| Página de inicio: | 4170 |
| Página final: | 4183 |
| Idioma: | English |
| DOI: |
10.1002/mma.5637 |
| Notas: | ISI, SCOPUS |