Desalination Performance of Antibiofouling Reverse Osmosis Membranes

Andreina Garcia; Barbara Rodriguez; Didem Ozturk; Maibelin Rosales; Carlos Paredes; Fernanda Cuadra; Santiago Montserrat

Abstract

The use of reverse osmosis membranes (RO) is the most used technology for water desalination; however, membrane biofouling is considered a critical issue affecting desalination plants. The incorporation of nanoparticles with antimicrobial properties into RO membranes has been reported as an effective route for enhancing the antibiofouling properties but could diminish the performance of desalination. The aim of this work was to study the performance of antibiofouling of thin film composite (TFC-RO) membrane by incorporating antimicrobial copper-oxide (CuO) nanoparticles. These nanoparticles were incorporated within the structure of the membrane during the interfacial polymerization process. The membranes were characterized by scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscope (EDX) and atomic force microscopy (AFM) in order to observe the morphology and verify the incorporation of nanoparticles within them. Bactericidal tests were performed using Escherichia coli. Anti-adhesion on the membranes was confirmed using epifluorescence microscopy. Membranes performance were evaluated in terms of permeate flux and salt rejection by using a cross flow test cell. FESEM and EDX analyses confirmed the incorporation of nanoparticles into the membrane. These membranes showed significant anti-bacterial and excellent anti-adhesion effect attributed to the copper toxicity. Desalination performance of modified membranes showed an important salt rejection of about 98% with stable water flux about 36 L.m−2 .h−1 and a recovery of 50%. Measure copper concentrations in the permeate water shows to be negligible, indicating that the copper is not leached. In conclusion, the incorporation of CuO nanoparticles into TFC-RO membranes improves the antibiofouling capacities without impairing the performance of the membrane.

Más información

Título de la Revista: Modern Environmental Science and Engineering
Volumen: 2
Número: 7
Editorial: Academic Star
Fecha de publicación: 2016
Página de inicio: 481
Página final: 489
Notas: SCOPUS