Directional dynamical cubes for minimal Z(d)-systems
Abstract
We introduce the notions of directional dynamical cubes and directional regionally proximal relation defined via these cubes for a minimal Z(d)-system. X; T-1, ...,T-d). We study the structural properties of systems that satisfy the so-called unique closing parallelepiped property and we characterize them in several ways. In the distal case, we build the maximal factor of a Z(d)-system (X, T-1, ...., T-d) that satisfies this property by taking the quotient with respect to the directional regionally proximal relation. Finally, we completely describe distal Z(d)-systems that enjoy the unique closing parallelepiped property and provide explicit examples.
Más información
Título según WOS: | Directional dynamical cubes for minimal Z(d)-systems |
Título según SCOPUS: | Directional dynamical cubes for minimal -systems |
Título de la Revista: | ERGODIC THEORY AND DYNAMICAL SYSTEMS |
Volumen: | 40 |
Número: | 12 |
Editorial: | CAMBRIDGE UNIV PRESS |
Fecha de publicación: | 2019 |
Idioma: | English |
DOI: |
10.1017/ETDS.2019.33 |
Notas: | ISI, SCOPUS |