First-principles study of Ni adatom migration on graphene with vacancies
Abstract
A theoretical study based on first-principles calculations about the interaction and diffusion of Ni atoms on pristine graphene and graphene with a single vacancy is presented. In the first case, we explored the structural changes due to the adsorption of Ni on graphene and the effects on the electronic structure. In the case of graphene with a vacancy, we analyzed the impact of the adsorbed Ni atom on the distortion of the graphene structure and how it depends on the distance from the graphene defect. In the analysis, we observed the changes in the electron localization function and the charge density. By knowing the interaction map of Ni with graphene, and the structural changes of the network, we performed energy barrier calculations within the climbing image nudged elastic band methodology to study the nickel diffusion. Finally, we explored how the vacancy and structural distortions affect the minimum energy paths and the saddle points for nickel moving away, around, and towards the vacancy.
Más información
Título según WOS: | First-principles study of Ni adatom migration on graphene with vacancies |
Título según SCOPUS: | First-principles study of Ni adatom migration on graphene with vacancies |
Título de la Revista: | RSC ADVANCES |
Volumen: | 9 |
Número: | 33 |
Editorial: | ROYAL SOC CHEMISTRY |
Fecha de publicación: | 2019 |
Página de inicio: | 18823 |
Página final: | 18834 |
Idioma: | English |
DOI: |
10.1039/c9ra00999j |
Notas: | ISI, SCOPUS |