On the algebraic structure of rotationally invariant two-dimensional Hamiltonians on the noncommutative phase space

Falomir, H; Pisani P.A.G.; Vega, F; Cárcamo, D; Méndez, F; Loewe, M

Keywords: quantum mechanics, noncommutative phase space, spectrum of rotationally invarint Hamiltonians

Abstract

We study two-dimensional Hamiltonians in phase space with non-commutativity both in coordinate and momenta. We consider the generator of rotations on the noncommutative plane and the Lie algebra generated by Hermitian rotationally invariant quadratic forms of the noncommutative dynamical variables. We show that two quantum phases are possible, chareacterized by the Lie algebras sl(2,R) or su(2) according to the relation between the non-commutativity parameters, with the rotation generator related with the Casimir operator. From this algebraic perspective, we analize the spectrum of some simple models with nonrelativistic rotationally invariant Hamiltonians in this noncommutative phase space, such as the isotropic harmonic oscillator, the Landau problem and the cylindrical well potential

Más información

Título de la Revista: JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL
Volumen: 49
Editorial: IOP PUBLISHING LTD
Fecha de publicación: 2016
Página de inicio: 055202
Página final: 055248
Idioma: Ingles
Notas: ISI