Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model

Desrosiers, P; Lapointe, L; Mathieu, P

Abstract

We present an algebraic construction of the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement. These eigenfunctions are the superspace extension of the generalized Hermite (or Hi-Jack) polynomials. The conserved quantities of the rational supersymmetric model are related to their trigonometric relatives through a similarity transformation. This leads to a simple expression between the corresponding eigenfunctions: the generalized Hermite superpolynomials are written as a differential operator acting on the corresponding Jack superpolynomials. As an aside, the maximal superintegrability of the supersymmetric rational Calogero-Moser-Sutherland model is demonstrated. © 2003 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
Título según SCOPUS: Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model
Título de la Revista: NUCLEAR PHYSICS B
Volumen: 674
Número: 3
Editorial: Elsevier
Fecha de publicación: 2003
Página de inicio: 615
Página final: 633
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0550321303006473
DOI:

10.1016/j.nuclphysb.2003.08.003

Notas: ISI, SCOPUS