Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps

Labra-Muñoz, Jacqueline; Konstantinovi?, Zorica; Balcells, Lluis; Pomar, Alberto; van der Zant, Herre S. J.; Duli?, Diana

Abstract

We report on the fabrication and measurements of platinum-self-aligned nanogap devices containing cubed iron (core)/iron oxide (shell) nanoparticles (NPs) with two average different sizes (13 and 17 nm). The nanoparticles are deposited by means of a cluster gun technique. Their trapping across the nanogap is demonstrated by comparing the current vs voltage characteristics (I-Vs) before and after the deposition. At low temperature, the I-Vs can be well fitted to the Korotkov and Nazarov Coulomb blockade model, which captures the coexistence of single-electron tunneling and tunnel barrier suppression upon a bias voltage increase. The measurements thus show that Coulomb-blockaded devices can be made with a nanoparticle cluster source, which extends the existing possibilities to fabricate such devices to those in which it is very challenging to reduce the usual NP agglomeration given by a solution method. Published under license by AIP Publishing.

Más información

Título según WOS: Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps
Título según SCOPUS: Trapping and electrical characterization of single core/shell iron-based nanoparticles in self-aligned nanogaps
Título de la Revista: APPLIED PHYSICS LETTERS
Volumen: 115
Número: 6
Editorial: AMER INST PHYSICS
Fecha de publicación: 2019
Idioma: English
DOI:

10.1063/1.5094352

Notas: ISI, SCOPUS