On a semilinear parabolic system of reaction-diffusion with absorption

Bidaut-Veron, MF; García Huidobro M; Yarur C.

Abstract

We consider the semilinear parabolic system with absorption terms in a bounded domain ? of ?N ut - ?u + |v| p|u|k-1u = 0, in ? × (0, ?), v t - ?v + |u|q|v|l-1v = 0, in ? × (0, ?), u(0) = u0, v(0) = v0, in ?, where p, q > 0 and k, l ? 0, with Dirichlet or Neuman conditions on ?? (0, ?). We study the existence and uniqueness of the Cauchy problem when the initial data are L1 functions or bounded measures. We find invariant regions when u0, v0 are nonnegative, and give sufficient conditions for positivity or extinction in finite time.

Más información

Título según WOS: On a semilinear parabolic system of reaction-diffusion with absorption
Título según SCOPUS: On a semilinear parabolic system of reaction-diffusion with absorption
Título de la Revista: ASYMPTOTIC ANALYSIS
Volumen: 36
Número: 03-abr
Editorial: IOS Press
Fecha de publicación: 2003
Página de inicio: 241
Página final: 283
Idioma: English
Notas: ISI, SCOPUS