On a semilinear parabolic system of reaction-diffusion with absorption
Abstract
We consider the semilinear parabolic system with absorption terms in a bounded domain ? of ?N ut - ?u + |v| p|u|k-1u = 0, in ? × (0, ?), v t - ?v + |u|q|v|l-1v = 0, in ? × (0, ?), u(0) = u0, v(0) = v0, in ?, where p, q > 0 and k, l ? 0, with Dirichlet or Neuman conditions on ?? (0, ?). We study the existence and uniqueness of the Cauchy problem when the initial data are L1 functions or bounded measures. We find invariant regions when u0, v0 are nonnegative, and give sufficient conditions for positivity or extinction in finite time.
Más información
Título según WOS: | On a semilinear parabolic system of reaction-diffusion with absorption |
Título según SCOPUS: | On a semilinear parabolic system of reaction-diffusion with absorption |
Título de la Revista: | ASYMPTOTIC ANALYSIS |
Volumen: | 36 |
Número: | 03-abr |
Editorial: | IOS Press |
Fecha de publicación: | 2003 |
Página de inicio: | 241 |
Página final: | 283 |
Idioma: | English |
Notas: | ISI, SCOPUS |