Submersions and curves of constant geodesic curvature
Abstract
Considering Riemannian submersions, we find necessary and sufficient conditions for when sub-Riemannian normal geodesics project to curves of constant first geodesic curvature or constant first and vanishing second geodesic curvature. We describe a canonical extension of the sub-Riemannian metric and study geometric properties of the obtained Riemannian manifold. This work contains several examples illustrating the results.
Más información
Título según WOS: | Submersions and curves of constant geodesic curvature |
Título según SCOPUS: | Submersions and curves of constant geodesic curvature |
Título de la Revista: | MATHEMATISCHE NACHRICHTEN |
Volumen: | 292 |
Número: | 9 |
Editorial: | WILEY-V C H VERLAG GMBH |
Fecha de publicación: | 2019 |
Página de inicio: | 1956 |
Página final: | 1971 |
Idioma: | English |
DOI: |
10.1002/mana.201800352 |
Notas: | ISI, SCOPUS |