Determination of some rare earth elements by EDXRF and artificial neural networks
Abstract
This paper describes the simultaneous determination of Pr, Nd and Sm by EDXRF spectrometry using mixtures of oxides of these metals in a silica matrix. The data were treated by distinct neural network algorithms: back-propagation (BP), Levenberg-Marquardt (LM) and two variations of back-propagation (called BP-SC, single component, and BP-MC, multiple component), using results from the PLS model (partial least square regression) for comparison. The best applied model was the BP-SC neural network, which produced relative standard errors of prediction of 17.5% for Pr, 12.5% for Nd and 12.6% for Sm. Copyright © 2003 John Wiley & Sons, Ltd.
Más información
Título según WOS: | Determination of some rare earth elements by EDXRF and artificial neural networks |
Título según SCOPUS: | Determination of some rare earth elements by EDXRF and artificial neural networks |
Título de la Revista: | X-RAY SPECTROMETRY |
Volumen: | 32 |
Número: | 6 |
Editorial: | Wiley |
Fecha de publicación: | 2003 |
Página de inicio: | 423 |
Página final: | 427 |
Idioma: | English |
URL: | http://doi.wiley.com/10.1002/xrs.662 |
DOI: |
10.1002/xrs.662 |
Notas: | ISI, SCOPUS |