The homotopical reduction of a nearest neighbor random walk

Fontbona, J; Martínez, S.

Abstract

Consider a nearest neighbor random walk on a graph G and discard all the segments of its trajectory that are homotopically equivalent to a single point. We prove that if the lift of the random walk to the covering tree of G is transient, then the resulting "reduced" trajectories induce a Markov chain on the set of oriented edges of G. We study this chain in relation with the original random walk. As an intermediate result, we give a simple proof of the Markovian structure of the harmonic measure on trees.

Más información

Título según WOS: The homotopical reduction of a nearest neighbor random walk
Título según SCOPUS: The homotopical reduction of a nearest neighbor random walk
Título de la Revista: BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA
Volumen: 34
Número: 3
Editorial: Freund Publishing House Ltd.
Fecha de publicación: 2003
Página de inicio: 509
Página final: 528
Idioma: English
URL: http://link.springer.com/10.1007/s00574-003-0027-y
DOI:

10.1007/s00574-003-0027-y

Notas: ISI, SCOPUS