The homotopical reduction of a nearest neighbor random walk
Abstract
Consider a nearest neighbor random walk on a graph G and discard all the segments of its trajectory that are homotopically equivalent to a single point. We prove that if the lift of the random walk to the covering tree of G is transient, then the resulting "reduced" trajectories induce a Markov chain on the set of oriented edges of G. We study this chain in relation with the original random walk. As an intermediate result, we give a simple proof of the Markovian structure of the harmonic measure on trees.
Más información
Título según WOS: | The homotopical reduction of a nearest neighbor random walk |
Título según SCOPUS: | The homotopical reduction of a nearest neighbor random walk |
Título de la Revista: | BOLETIM DA SOCIEDADE BRASILEIRA DE MATEMATICA |
Volumen: | 34 |
Número: | 3 |
Editorial: | Freund Publishing House Ltd. |
Fecha de publicación: | 2003 |
Página de inicio: | 509 |
Página final: | 528 |
Idioma: | English |
URL: | http://link.springer.com/10.1007/s00574-003-0027-y |
DOI: |
10.1007/s00574-003-0027-y |
Notas: | ISI, SCOPUS |