Reducing Vocabulary Size in Human Action Classification

Cozar, J. R.; Hernandez, R.; Heredia, Y.; Gonzalez-Linares, J. M.; Guil, N.; Grana, M.; Toro, C; Posada, J; Howlett, RJ; Jain, LC

Abstract

Human action classification is an important task in computer vision. Bag-of-Words using spatio-temporal features and some classification algorithm is one of the most successful methods in this context. In this work we have studied the effect of reducing the vocabulary size using a video word ranking method. We have used the KTH dataset to obtain a vocabulary with more descriptive words and, at the same time, more compact and efficient. Results for different vocabulary sizes show an improvement of the recognition rate whilst reducing the number of words due to the fact that non-descriptive words are removed.

Más información

Título según WOS: ID WOS:000332936700173 Not found in local WOS DB
Título de la Revista: ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT: PROCEEDINGS OF THE 16TH INTERNATIONAL CONFERENCE OF THE CATALAN ASSOCIATION FOR ARTIFICIAL INTELLIGENCE
Volumen: 243
Editorial: IOS Press
Fecha de publicación: 2012
Página de inicio: 1712
Página final: 1719
DOI:

10.3233/978-1-61499-105-2-1712

Notas: ISI