Regularized minimax probability machine

Maldonado, Sebastián; Carrasco, Miguel; López, Julio

Abstract

In this paper, we propose novel second-order cone programming formulations for binary classification, by extending the Minimax Probability Machine (MPM) approach. Inspired by Support Vector Machines, a regularization term is included in the MPM and Minimum Error Minimax Probability Machine (MEMPM) methods. This inclusion reduces the risk of obtaining ill-posed estimators, stabilizing the problem, and, therefore, improving the generalization performance. Our approaches are first derived as linear methods, and subsequently extended as kernel-based strategies for nonlinear classification. Experiments on well-known binary classification datasets demonstrate the virtues of the regularized formulations in terms of predictive performance. (C) 2019 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Regularized minimax probability machine
Título según SCOPUS: Regularized minimax probability machine
Título de la Revista: KNOWLEDGE-BASED SYSTEMS
Volumen: 177
Editorial: Elsevier
Fecha de publicación: 2019
Página de inicio: 127
Página final: 135
Idioma: English
DOI:

10.1016/j.knosys.2019.04.016

Notas: ISI, SCOPUS