Robust nonparallel support vector machines via second-order cone programming

López, Julio; Maldonado, Sebastián; Carrasco, Miguel

Abstract

A novel binary classification approach is proposed in this paper, extending the ideas behind nonparallel support vector machine (NPSVM) to robust machine learning. NPSVM constructs two twin hyperplanes by solving two independent quadratic programming problems and generalizes the well-known twin support vector machine (TWSVM) method. Robustness is conferred on the NPSVM approach by using a probabilistic framework for maximizing model fit, which is cast into two second-order cone programming (SOCP) problems by assuming a worst-case setting for the data distribution of the training patterns. Experiments on benchmark datasets confirmed the theoretical virtues of our approach, showing superior average performance compared with various SVM formulations. (C) 2019 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Robust nonparallel support vector machines via second-order cone programming
Título según SCOPUS: Robust nonparallel support vector machines via second-order cone programming
Título de la Revista: NEUROCOMPUTING
Volumen: 364
Editorial: Elsevier
Fecha de publicación: 2019
Página de inicio: 227
Página final: 238
Idioma: English
DOI:

10.1016/j.neucom.2019.07.072

Notas: ISI, SCOPUS