Strong periodic solutions for a class of abstract evolution equations

Lukaszewicz, G; Ortega-Torres, EE; Rojas-Medar, MA

Abstract

We study a class of abstract nonlinear evolution equations in a separable Hilbert space for which we prove existence of strong time periodic solutions, provided the right-hand side is periodic and C1 in time, and small enough in the norm of the considered space. We prove also uniqueness and stability of the solutions. The results apply, in particular, in several models of hydrodynamics, such as magneto-micropolar and micropolar models, and classical magnetohydrodynamics and Navier-Stokes models with non-homogeneous boundary conditions. The existence part of the proof is based on a set of estimates for the family of finite-dimensional approximate solutions. © 2003 Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Strong periodic solutions for a class of abstract evolution equations
Título según SCOPUS: Strong periodic solutions for a class of abstract evolution equations
Título de la Revista: NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS
Volumen: 54
Número: 6
Editorial: PERGAMON-ELSEVIER SCIENCE LTD
Fecha de publicación: 2003
Página de inicio: 1045
Página final: 1056
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0362546X03001251
DOI:

10.1016/S0362-546X(03)00125-1

Notas: ISI, SCOPUS