On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening

Muhlich, U.; Brocks, W

Abstract

The algorithm proposed by Aravas to integrate a special type of elastic-plastic constitutive equations has been extended to incorporate kinematic hardening. Like in the case of isotropic hardening, the number of primary unknowns for the Newton iteration can be reduced to two scalar strain variables. Furthermore, the consistent tangent can be obtained explicitly. The modified algorithm has been applied to a Gurson-type model which takes into account kinematic hardening and the predictions of the Gurson-like model are compared with results obtained by unit cell calculations.

Más información

Título según WOS: On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening
Título según SCOPUS: On the numerical integration of a class of pressure-dependent plasticity models including kinematic hardening
Título de la Revista: COMPUTATIONAL MECHANICS
Volumen: 31
Número: 6
Editorial: Springer
Fecha de publicación: 2003
Página de inicio: 479
Página final: 488
Idioma: English
URL: http://link.springer.com/10.1007/s00466-003-0454-z
DOI:

10.1007/s00466-003-0454-z

Notas: ISI, SCOPUS