A posteriori error estimates for the finite element approximation of eigenvalue problems

Duran, RG; Padra, C.; Rodriguez, R

Abstract

This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.

Más información

Título según WOS: A posteriori error estimates for the finite element approximation of eigenvalue problems
Título según SCOPUS: A posteriori error estimates for the finite element approximation of eigenvalue problems
Título de la Revista: MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES
Volumen: 13
Número: 8
Editorial: WORLD SCIENTIFIC PUBL CO PTE LTD
Fecha de publicación: 2003
Página de inicio: 1219
Página final: 1229
Idioma: English
URL: http://www.worldscientific.com/doi/abs/10.1142/S0218202503002878
DOI:

10.1142/S0218202503002878

Notas: ISI, SCOPUS