A posteriori error estimates for the finite element approximation of eigenvalue problems
Abstract
This paper deals with a posteriori error estimators for the linear finite element approximation of second-order elliptic eigenvalue problems in two or three dimensions. First, we give a simple proof of the equivalence, up to higher order terms, between the error and a residual type error estimator. Second, we prove that the volumetric part of the residual is dominated by a constant times the edge or face residuals, again up to higher order terms. This result was not known for eigenvalue problems.
Más información
Título según WOS: | A posteriori error estimates for the finite element approximation of eigenvalue problems |
Título según SCOPUS: | A posteriori error estimates for the finite element approximation of eigenvalue problems |
Título de la Revista: | MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES |
Volumen: | 13 |
Número: | 8 |
Editorial: | WORLD SCIENTIFIC PUBL CO PTE LTD |
Fecha de publicación: | 2003 |
Página de inicio: | 1219 |
Página final: | 1229 |
Idioma: | English |
URL: | http://www.worldscientific.com/doi/abs/10.1142/S0218202503002878 |
DOI: |
10.1142/S0218202503002878 |
Notas: | ISI, SCOPUS |