Existence and construction of nonnegative matrices with complex spectrum

Rojo, O; Soto, RL

Abstract

The following inverse spectrum problem for nonnegative matrices is considered: given a set of complex numbers ? = {?1, ?2,..., ?n}, find necessary and sufficient conditions for the existence of an n × n nonnegative matrix A with spectrum ?. Our work is motivated by a relevant theoretical result of Guo Wuwen [Linear Algebra Appl. 266 (1997) 261, Theorem 2.1]: there exists a real parameter ?0 ? max2?j?n |?j| such that the problem has a solution if and only if ?1 ? ?0. In particular, we discuss how to compute ?0 and the solution matrix A for certain class of matrices. A sufficient condition for the problem to have a solution is also derived. © 2003 Elsevier Science Inc. All rights reserved.

Más información

Título según WOS: Existence and construction of nonnegative matrices with complex spectrum
Título según SCOPUS: Existence and construction of nonnegative matrices with complex spectrum
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 368
Número: SUPPL.
Editorial: Elsevier Science Inc.
Fecha de publicación: 2003
Página de inicio: 53
Página final: 69
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S002437950200650X
DOI:

10.1016/S0024-3795(02)00650-X

Notas: ISI, SCOPUS