Existence and construction of nonnegative matrices with complex spectrum
Abstract
The following inverse spectrum problem for nonnegative matrices is considered: given a set of complex numbers ? = {?1, ?2,..., ?n}, find necessary and sufficient conditions for the existence of an n × n nonnegative matrix A with spectrum ?. Our work is motivated by a relevant theoretical result of Guo Wuwen [Linear Algebra Appl. 266 (1997) 261, Theorem 2.1]: there exists a real parameter ?0 ? max2?j?n |?j| such that the problem has a solution if and only if ?1 ? ?0. In particular, we discuss how to compute ?0 and the solution matrix A for certain class of matrices. A sufficient condition for the problem to have a solution is also derived. © 2003 Elsevier Science Inc. All rights reserved.
Más información
Título según WOS: | Existence and construction of nonnegative matrices with complex spectrum |
Título según SCOPUS: | Existence and construction of nonnegative matrices with complex spectrum |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 368 |
Número: | SUPPL. |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2003 |
Página de inicio: | 53 |
Página final: | 69 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S002437950200650X |
DOI: |
10.1016/S0024-3795(02)00650-X |
Notas: | ISI, SCOPUS |