Differentiability of solutions of second-order functional differential equations with unbounded delay

Henriquez, HR; Vasquez, CH

Abstract

In this paper we study the differentiability of solutions of the second-order semilinear abstract retarded functional differential equation with unbounded delay, specially when the underlying space is reflexive or at least has the Radon-Nikodym property. We apply our results to characterize the infinitesimal generators of several strongly continuous semigroups of linear operators that arise in the theory of linear abstract retarded functional differential equations with unbounded delay on a phase space defined axiomatically. © 2003 Elsevier Science (USA). All rights reserved.

Más información

Título según WOS: Differentiability of solutions of second-order functional differential equations with unbounded delay
Título según SCOPUS: Differentiability of solutions of second-order functional differential equations with unbounded delay
Título de la Revista: JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS
Volumen: 280
Número: 2
Editorial: ACADEMIC PRESS INC ELSEVIER SCIENCE
Fecha de publicación: 2003
Página de inicio: 284
Página final: 312
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0022247X03000428
DOI:

10.1016/S0022-247X(03)00042-8

Notas: ISI, SCOPUS - ISI