Differentiability of solutions of second-order functional differential equations with unbounded delay
Abstract
In this paper we study the differentiability of solutions of the second-order semilinear abstract retarded functional differential equation with unbounded delay, specially when the underlying space is reflexive or at least has the Radon-Nikodym property. We apply our results to characterize the infinitesimal generators of several strongly continuous semigroups of linear operators that arise in the theory of linear abstract retarded functional differential equations with unbounded delay on a phase space defined axiomatically. © 2003 Elsevier Science (USA). All rights reserved.
Más información
Título según WOS: | Differentiability of solutions of second-order functional differential equations with unbounded delay |
Título según SCOPUS: | Differentiability of solutions of second-order functional differential equations with unbounded delay |
Título de la Revista: | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS |
Volumen: | 280 |
Número: | 2 |
Editorial: | ACADEMIC PRESS INC ELSEVIER SCIENCE |
Fecha de publicación: | 2003 |
Página de inicio: | 284 |
Página final: | 312 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0022247X03000428 |
DOI: |
10.1016/S0022-247X(03)00042-8 |
Notas: | ISI, SCOPUS - ISI |