Charged Taub-NUT solution in Lovelock gravity with generalized Wheeler polynomials

Corral, Cristóbal; Flores-Alfonso, Daniel; Quevedo, Hernando

Abstract

Wheeler's approach to finding exact solutions in Lovelock gravity has been predominantly applied to static spacetimes. This has led to a Birkhoff theorem for arbitrary base manifolds in dimensions higher than four. In this work, we generalize the method and apply it to a stationary metric. Using this perspective, we present a Taub-NUT solution in eight-dimensional Lovelock gravity coupled to Maxwell fields. We use the first-order formalism to integrate the equations of motion in the torsion-free sector. The Maxwell field is presented explicitly with general integration constants, while the background metric is given implicitly in terms of a cubic algebraic equation for the metric function. We display precisely how the NUT parameter generalizes Wheeler polynomials in a highly nontrivial manner.

Más información

Título según WOS: Charged Taub-NUT solution in Lovelock gravity with generalized Wheeler polynomials
Título según SCOPUS: Charged Taub-NUT solution in Lovelock gravity with generalized Wheeler polynomials
Título de la Revista: PHYSICAL REVIEW D
Volumen: 100
Número: 6
Editorial: AMER PHYSICAL SOC
Fecha de publicación: 2019
Idioma: English
DOI:

10.1103/PhysRevD.100.064051

Notas: ISI, SCOPUS