A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree

Rojo, O; Pena M.

Abstract

Let L(?k) be the Laplacian matrix of an unweighted balanced binary tree ?k of k levels. In this note, we show that (a) ? = 1 is an eigenvalue of L(?k) with multiplicity ?l=0?(k-2)/4?2k-4l-2 if k is not a multiple of 4 or 1 + ?l=0?(k-2)/4?2k-4l-2 if k is a multiple of 4, where ?(k - 2)/4? is the greatest integer not exceeding (k - 2)/4. (b) ? = 3 is an eigenvalue of L(?k) if and only if k is even. (c) ? = 5 is an eigenvalue of L(?k) if and only if k is a multiple of 4. © 2003 Elsevier Science Inc. All rights reserved.

Más información

Título según WOS: A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree
Título según SCOPUS: A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree
Título de la Revista: LINEAR ALGEBRA AND ITS APPLICATIONS
Volumen: 362
Editorial: Elsevier Science Inc.
Fecha de publicación: 2003
Página de inicio: 293
Página final: 300
Idioma: English
URL: http://linkinghub.elsevier.com/retrieve/pii/S0024379502005657
DOI:

10.1016/S0024-3795(02)00565-7

Notas: ISI, SCOPUS