A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree
Abstract
Let L(?k) be the Laplacian matrix of an unweighted balanced binary tree ?k of k levels. In this note, we show that (a) ? = 1 is an eigenvalue of L(?k) with multiplicity ?l=0?(k-2)/4?2k-4l-2 if k is not a multiple of 4 or 1 + ?l=0?(k-2)/4?2k-4l-2 if k is a multiple of 4, where ?(k - 2)/4? is the greatest integer not exceeding (k - 2)/4. (b) ? = 3 is an eigenvalue of L(?k) if and only if k is even. (c) ? = 5 is an eigenvalue of L(?k) if and only if k is a multiple of 4. © 2003 Elsevier Science Inc. All rights reserved.
Más información
Título según WOS: | A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree |
Título según SCOPUS: | A note on the integer eigenvalues of the Laplacian matrix of a balanced binary tree |
Título de la Revista: | LINEAR ALGEBRA AND ITS APPLICATIONS |
Volumen: | 362 |
Editorial: | Elsevier Science Inc. |
Fecha de publicación: | 2003 |
Página de inicio: | 293 |
Página final: | 300 |
Idioma: | English |
URL: | http://linkinghub.elsevier.com/retrieve/pii/S0024379502005657 |
DOI: |
10.1016/S0024-3795(02)00565-7 |
Notas: | ISI, SCOPUS |