Matching points with disks with a common intersection
Abstract
We consider matchings with diametral disks between two sets of points R and B. More precisely, for each pair of matched points p is an element of R and q is an element of B, we consider the disk through p and q with the smallest diameter. We prove that for any R and B such that vertical bar RS vertical bar = vertical bar B vertical bar, there exists a perfect matching such that the diametral disks of the matched point pairs have a common intersection. In fact, our result is stronger, and shows that a maximum weight perfect matching has this property. (C) 2019 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Matching points with disks with a common intersection |
Título según SCOPUS: | Matching points with disks with a common intersection |
Título de la Revista: | DISCRETE MATHEMATICS |
Volumen: | 342 |
Número: | 7 |
Editorial: | ELSEVIER SCIENCE BV |
Fecha de publicación: | 2019 |
Página de inicio: | 1885 |
Página final: | 1893 |
Idioma: | English |
DOI: |
10.1016/j.disc.2019.03.003 |
Notas: | ISI, SCOPUS |