Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods

Führer T.; Gantner G.; Praetorius D.; Schimanko S.

Abstract

We define and analyze (local) multilevel diagonal preconditioners for isogeometric boundary elements on locally refined meshes in two dimensions. Hypersingular and weakly-singular integral equations are considered. We prove that the condition number of the preconditioned systems of linear equations is independent of the mesh-size and the refinement level. Therefore, the computational complexity, when using appropriate iterative solvers, is optimal. Our analysis is carried out for closed and open boundaries and numerical examples confirm our theoretical results. (C) 2019 Elsevier B.V. All rights reserved.

Más información

Título según WOS: Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods
Título según SCOPUS: Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods
Título de la Revista: COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Volumen: 351
Editorial: ELSEVIER SCIENCE SA
Fecha de publicación: 2019
Página de inicio: 571
Página final: 598
Idioma: English
DOI:

10.1016/j.cma.2019.03.038

Notas: ISI, SCOPUS