Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods
Abstract
We define and analyze (local) multilevel diagonal preconditioners for isogeometric boundary elements on locally refined meshes in two dimensions. Hypersingular and weakly-singular integral equations are considered. We prove that the condition number of the preconditioned systems of linear equations is independent of the mesh-size and the refinement level. Therefore, the computational complexity, when using appropriate iterative solvers, is optimal. Our analysis is carried out for closed and open boundaries and numerical examples confirm our theoretical results. (C) 2019 Elsevier B.V. All rights reserved.
Más información
Título según WOS: | Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods |
Título según SCOPUS: | Optimal additive Schwarz preconditioning for adaptive 2D IGA boundary element methods |
Título de la Revista: | COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING |
Volumen: | 351 |
Editorial: | ELSEVIER SCIENCE SA |
Fecha de publicación: | 2019 |
Página de inicio: | 571 |
Página final: | 598 |
Idioma: | English |
DOI: |
10.1016/j.cma.2019.03.038 |
Notas: | ISI, SCOPUS |