Sensitive Dependence of Geometric Gibbs States at Positive Temperature

Coronel D.; Rivera-Letelier J.

Abstract

We give the first example of a smooth family of real and complex maps having sensitive dependence of geometric Gibbs states at positive temperature. This family consists of quadratic-like maps that are non-uniformly hyperbolic in a strong sense. We show that for a dense set of maps in the family the geometric Gibbs states do not converge at positive temperature. These are the first examples of non-convergence at positive temperature in statistical mechanics or the thermodynamic formalism, and answers a question of van Enter and Ruszel. We also show that this phenomenon is robust: There is an open set of analytic 2-parameter families of quadratic-like maps that exhibit sensitive dependence of geometric Gibbs states at positive temperature.

Más información

Título según WOS: Sensitive Dependence of Geometric Gibbs States at Positive Temperature
Título según SCOPUS: Sensitive Dependence of Geometric Gibbs States at Positive Temperature
Título de la Revista: COMMUNICATIONS IN MATHEMATICAL PHYSICS
Volumen: 368
Número: 1
Editorial: Springer
Fecha de publicación: 2019
Página de inicio: 383
Página final: 425
Idioma: English
DOI:

10.1007/s00220-019-03350-6

Notas: ISI, SCOPUS