Sensitive Dependence of Geometric Gibbs States at Positive Temperature
Abstract
We give the first example of a smooth family of real and complex maps having sensitive dependence of geometric Gibbs states at positive temperature. This family consists of quadratic-like maps that are non-uniformly hyperbolic in a strong sense. We show that for a dense set of maps in the family the geometric Gibbs states do not converge at positive temperature. These are the first examples of non-convergence at positive temperature in statistical mechanics or the thermodynamic formalism, and answers a question of van Enter and Ruszel. We also show that this phenomenon is robust: There is an open set of analytic 2-parameter families of quadratic-like maps that exhibit sensitive dependence of geometric Gibbs states at positive temperature.
Más información
| Título según WOS: | Sensitive Dependence of Geometric Gibbs States at Positive Temperature |
| Título según SCOPUS: | Sensitive Dependence of Geometric Gibbs States at Positive Temperature |
| Título de la Revista: | COMMUNICATIONS IN MATHEMATICAL PHYSICS |
| Volumen: | 368 |
| Número: | 1 |
| Editorial: | Springer |
| Fecha de publicación: | 2019 |
| Página de inicio: | 383 |
| Página final: | 425 |
| Idioma: | English |
| DOI: |
10.1007/s00220-019-03350-6 |
| Notas: | ISI, SCOPUS |