Existence and Lyapunov Pairs for the Perturbed Sweeping Process Governed by a Fixed Set
Abstract
The aim of this paper is to prove existence results for a class of sweeping processes in Hilbert spaces by using the catching-up algorithm. These processes are governed by ball-compact non autonomous sets. Moreover, a full characterization of nonsmooth Lyapunov pairs is obtained under very general hypotheses. We also provide a criterion for weak invariance. Some applications to hysteresis and crowd motion are given.
Más información
| Título según WOS: | Existence and Lyapunov Pairs for the Perturbed Sweeping Process Governed by a Fixed Set |
| Título según SCOPUS: | Existence and Lyapunov Pairs for the Perturbed Sweeping Process Governed by a Fixed Set |
| Título de la Revista: | SET-VALUED AND VARIATIONAL ANALYSIS |
| Volumen: | 27 |
| Número: | 2 |
| Editorial: | Springer |
| Fecha de publicación: | 2019 |
| Página de inicio: | 569 |
| Página final: | 583 |
| Idioma: | English |
| DOI: |
10.1007/s11228-018-0480-9 |
| Notas: | ISI, SCOPUS |