Quantum aspects of the higher-derivative Lorentz-breaking extension of QED
Abstract
We consider the higher-derivative Lorentz-breaking extension of QED, where the new terms are the Myers-Pospelov-like ones in gauge and spinor sectors, and the higher-derivative Carroll-Field-Jackiw term. For this theory, we study its tree-level dynamics, discuss the dispersion relation, and present one more scheme for its perturbative generation, including the finite-temperature case. Also, we develop a method to study perturbative unitarity based on consistent rotation of the theory to Euclidean space. We use this method to verify explicitly that for special choices of the Lorentz-breaking vector the unitarity is preserved at the one-loop level, even in the presence of higher time derivatives.
Más información
Título según WOS: | Quantum aspects of the higher-derivative Lorentz-breaking extension of QED |
Título según SCOPUS: | Quantum aspects of the higher-derivative Lorentz-breaking extension of QED |
Título de la Revista: | PHYSICAL REVIEW D |
Volumen: | 99 |
Número: | 9 |
Editorial: | AMER PHYSICAL SOC |
Fecha de publicación: | 2019 |
Idioma: | English |
DOI: |
10.1103/PhysRevD.99.096012 |
Notas: | ISI, SCOPUS |