On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces

Salas D.; Thibault L.

Abstract

The property of continuous differentiability with Lipschitz derivative of the square distance function is known to be a characterization of prox-regular sets. We show in this paper that the property of higher-order continuous differentiability with locally uniformly continuous last derivative of the square distance function near a point of a set characterizes, in Hilbert spaces, that the set is a submanifold with the same differentiability property near the point.

Más información

Título según WOS: On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces
Título según SCOPUS: On Characterizations of Submanifolds via Smoothness of the Distance Function in Hilbert Spaces
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 182
Número: 1
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2019
Página de inicio: 189
Página final: 210
Idioma: English
DOI:

10.1007/s10957-019-01473-3

Notas: ISI, SCOPUS