Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
Abstract
In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a delayed boundary control. From the spectral decomposition of the spatial operator associated to the equation, we find that there is a finite number of unstable eigenvalues. After applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to the unstable eigenvalues. Then, thanks to the use of a Lyapunov function, we prove that the same feedback law exponential stabilize the original unstable infinite-dimensional system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
Más información
| Título según WOS: | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control |
| Título según SCOPUS: | Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control |
| Título de la Revista: | IFAC PAPERSONLINE |
| Volumen: | 52 |
| Número: | 2 |
| Editorial: | Elsevier |
| Fecha de publicación: | 2019 |
| Página de inicio: | 70 |
| Página final: | 75 |
| Idioma: | English |
| DOI: |
10.1016/j.ifacol.2019.08.013 |
| Notas: | ISI, SCOPUS |