Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control

Guzmán P.; Marx S.; Cerpa E.

Abstract

In this paper we stabilize the linear Kuramoto-Sivashinsky equation by means of a delayed boundary control. From the spectral decomposition of the spatial operator associated to the equation, we find that there is a finite number of unstable eigenvalues. After applying the Artstein transform to deal with the delay phenomenon, we design a feedback law based on the pole-shifting theorem to exponential stabilize the finite-dimensional system associated to the unstable eigenvalues. Then, thanks to the use of a Lyapunov function, we prove that the same feedback law exponential stabilize the original unstable infinite-dimensional system. (C) 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Más información

Título según WOS: Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
Título según SCOPUS: Stabilization of the linear Kuramoto-Sivashinsky equation with a delayed boundary control
Título de la Revista: IFAC PAPERSONLINE
Volumen: 52
Número: 2
Editorial: Elsevier
Fecha de publicación: 2019
Página de inicio: 70
Página final: 75
Idioma: English
DOI:

10.1016/j.ifacol.2019.08.013

Notas: ISI, SCOPUS