Analysis and Approximation of a Vorticity-Velocity-Pressure Formulation for the Oseen Equations

Anaya V.; Bouharguane A.; Mora D.; Reales C.; Ruiz-Baier R.; Seloula N.; Torres H.

Abstract

We introduce a family of mixed methods and discontinuous Galerkin discretisations designed to numerically solve the Oseen equations written in terms of velocity, vorticity, and Bernoulli pressure. The unique solvability of the continuous problem is addressed by invoking a global inf-sup property in an adequate abstract setting for non-symmetric systems. The proposed finite element schemes, which produce exactly divergence-free discrete velocities, are shown to be well-defined and optimal convergence rates are derived in suitable norms. This mixed finite element method is also pressure-robust. In addition, we establish optimal rates of convergence for a class of discontinuous Galerkin schemes, which employ stabilisation. A set of numerical examples serves to illustrate salient features of these methods.

Más información

Título según WOS: Analysis and Approximation of a Vorticity-Velocity-Pressure Formulation for the Oseen Equations
Título según SCOPUS: Analysis and Approximation of a Vorticity–Velocity–Pressure Formulation for the Oseen Equations
Título de la Revista: JOURNAL OF SCIENTIFIC COMPUTING
Volumen: 80
Número: 3
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2019
Página de inicio: 1577
Página final: 1606
Idioma: English
DOI:

10.1007/s10915-019-00990-7

Notas: ISI, SCOPUS