Incorporating variable viscosity in vorticity-based formulations for Brinkman equations
Abstract
In this brief note, we introduce a non-symmetric mixed finite element formulation for Brinkman equations written in terms of velocity, vorticity, and pressure with non-constant viscosity. The analysis is performed by the classical BabuSla-Brezzi theory, and we state that any inf-sup stable finite element pair for Stokes approximating velocity and pressure can be coupled with a generic discrete space of arbitrary order for the vorticity. We establish optimal a priori error estimates, which are further confirmed through computational examples. (C) 2019 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Más información
Título según WOS: | Incorporating variable viscosity in vorticity-based formulations for Brinkman equations |
Título según SCOPUS: | Incorporating variable viscosity in vorticity-based formulations for Brinkman equations [Intégration de la viscosité variable dans des formulations en tourbillon pour les équations de Brinkman] |
Título de la Revista: | COMPTES RENDUS MATHEMATIQUE |
Volumen: | 357 |
Número: | 6 |
Editorial: | ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER |
Fecha de publicación: | 2019 |
Página de inicio: | 552 |
Página final: | 560 |
Idioma: | English |
DOI: |
10.1016/j.crma.2019.06.006 |
Notas: | ISI, SCOPUS |