Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces
Abstract
We use asymptotic analysis and generalized asymptotic functions for studying nonlinear and noncoercive mixed variational inequalities in finite dimensional spaces in the nonconvex case, that is, when the operator is nonlinear and noncoercive and the function is nonconvex and noncoercive. We provide general necessary and sufficient optimality conditions for the set of solutions to be nonempty and compact. As a consequence, a characterization of the nonemptiness and compactness of the solution set, when the operator is affine and the function is convex, is given. Finally, a comparison with existence results for equilibrium problems is presented.
Más información
Título según WOS: | Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces |
Título según SCOPUS: | Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces |
Título de la Revista: | JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS |
Volumen: | 183 |
Número: | 1 |
Editorial: | SPRINGER/PLENUM PUBLISHERS |
Fecha de publicación: | 2019 |
Página de inicio: | 122 |
Página final: | 138 |
Idioma: | English |
DOI: |
10.1007/s10957-019-01548-1 |
Notas: | ISI, SCOPUS |