Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces

Iusem A.; Lara F.

Abstract

We use asymptotic analysis and generalized asymptotic functions for studying nonlinear and noncoercive mixed variational inequalities in finite dimensional spaces in the nonconvex case, that is, when the operator is nonlinear and noncoercive and the function is nonconvex and noncoercive. We provide general necessary and sufficient optimality conditions for the set of solutions to be nonempty and compact. As a consequence, a characterization of the nonemptiness and compactness of the solution set, when the operator is affine and the function is convex, is given. Finally, a comparison with existence results for equilibrium problems is presented.

Más información

Título según WOS: Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces
Título según SCOPUS: Existence Results for Noncoercive Mixed Variational Inequalities in Finite Dimensional Spaces
Título de la Revista: JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS
Volumen: 183
Número: 1
Editorial: SPRINGER/PLENUM PUBLISHERS
Fecha de publicación: 2019
Página de inicio: 122
Página final: 138
Idioma: English
DOI:

10.1007/s10957-019-01548-1

Notas: ISI, SCOPUS