Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm
Abstract
A solution to the problem of speech recognition with signals corrupted by additive noise and CS-CELP coders is presented. The additive noise and the coding distortion are cancelled according to the following scheme: first, the pdf of the clean coded decoded speech is estimated with an additive noise model; secondly, the pdf of the clean uncoded signal is also estimated with a coding distortion model; finally, the hidden Markov model is compensated using the expected value of observation pdf in the context of the stochastic weighted Viterbi algorithm.
Más información
Título según WOS: | Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm |
Título según SCOPUS: | Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm |
Título de la Revista: | ELECTRONICS LETTERS |
Volumen: | 39 |
Número: | 4 |
Editorial: | INST ENGINEERING TECHNOLOGY-IET |
Fecha de publicación: | 2003 |
Página de inicio: | 409 |
Página final: | 411 |
Idioma: | English |
URL: | http://digital-library.theiet.org/content/journals/10.1049/el_20030252 |
DOI: |
10.1049/el:20030252 |
Notas: | ISI, SCOPUS |