Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm
Abstract
A solution to the problem of speech recognition with signals corrupted by additive noise and CS-CELP coders is presented. The additive noise and the coding distortion are cancelled according to the following scheme: first, the pdf of the clean coded decoded speech is estimated with an additive noise model; secondly, the pdf of the clean uncoded signal is also estimated with a coding distortion model; finally, the hidden Markov model is compensated using the expected value of observation pdf in the context of the stochastic weighted Viterbi algorithm.
Más información
| Título según WOS: | Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm |
| Título según SCOPUS: | Compensating additive noise and CS-CELP distortion in speech recognition using stochastic weighted Viterbi algorithm |
| Título de la Revista: | ELECTRONICS LETTERS |
| Volumen: | 39 |
| Número: | 4 |
| Editorial: | Wiley |
| Fecha de publicación: | 2003 |
| Página de inicio: | 409 |
| Página final: | 411 |
| Idioma: | English |
| URL: | http://digital-library.theiet.org/content/journals/10.1049/el_20030252 |
| DOI: |
10.1049/el:20030252 |
| Notas: | ISI, SCOPUS |