SMOOTH SOLUTIONS TO MIXED-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS WITH APPLICATIONS TO STABILITY ANALYSIS
Abstract
Conditions for existence, uniqueness and smoothness of solutions for systems of fractional differential equations of Caputo and/or Riemann-Liouville type having all of them in general and not of the same derivation order are established in this paper. It includes mixed-order, multi-order or non-commensurate fractional systems. The smooth property is shown to be relevant for drawing consequences on the global behavior of solutions for such systems. In particular, we obtain sufficient conditions for global boundedness of solutions to mixed-order nonlinear systems and asymptotic stability of nonlinear fractional systems using backstepping control.
Más información
Título según WOS: | SMOOTH SOLUTIONS TO MIXED-ORDER FRACTIONAL DIFFERENTIAL SYSTEMS WITH APPLICATIONS TO STABILITY ANALYSIS |
Título según SCOPUS: | Smooth solutions to mixed-order fractional differential systems with applications to stability analysis |
Título de la Revista: | JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS |
Volumen: | 31 |
Número: | 1 |
Editorial: | ROCKY MT MATH CONSORTIUM |
Fecha de publicación: | 2019 |
Página de inicio: | 59 |
Página final: | 84 |
Idioma: | English |
DOI: |
10.1216/JIE-2019-31-1-59 |
Notas: | ISI, SCOPUS |